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Introduction
Artificial intelligence (AI) has taken huge leaps of advancement in molecular sciences through the massive
accumulations of molecular data, computational power, and learning models. The breakthrough of
AlphaFold 2 in protein folding heralds a new age of AI-based molecular data analysis in materials,
chemical, and biological sciences. However, one of the main challenges in AI-based molecular sciences is
to construct effective molecular descriptors and fingerprints. To tackle this main challenge, we propose
several new persistent functions for molecular featurisation. By representing molecular structures such as
proteins, DNA, protein-ligand complex and protein-protein complexes as graphs, simplicial complex or
hypergraphs, we introduce persistent functions (PFs) such as persistent Ricci curvature and persistent
spectral to track the changes in their underlying topology and geometry in a filtration process. PFs are
converted into suitable input features for machine learning models to predict quantitative molecular
properties. In general, our models have demonstrated a great advantage over existing models in binding
affinity predictions.

Figure: Machine learning and deep learning pipeline for mathematical AI in molecular sciences.

Ollivier Ricci curvature and Forman Ricci curvature
▶ Vertex Probability Measure:

mα
x (xi) =


α if xi = x.
(1 − α)/kx if xi ∈ Γx.
0 otherwise.

(1)

Here, α is the proportion of mass that remains on vertex x.
▶ Wasserstein Distance between two vertex probability measures:
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▶ Ollivier Ricci curvature along an edge:
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▶ Forman Ricci curvature for a p-simplex σ:

F
♯
p(σ) = ♯{β(p+1) > σ}+ ♯{γ(p−1) < σ}− ♯{parallel neighbours of σ}, (4)

where β(p+1) > σ denotes a (p + 1)-simplex β that has σ as a face and γ(p−1) < σ denoting the
(p − 1)-simplex γ as a face of σ.

▶ Bochner-Weitzenböck Decomposition:

Lp = ∆p + RiccFp , (5)

where ∆p is the Bochner Laplacian, Lp = BT
p Bp + Bp+1BT

p+1 (p > 0) is the p-Hodge Laplacian. RiccFp is a
matrix with diagonals each equal to Forman Ricci curvature value for each of the p-simplices.

Although both Ricci curvatures are formulated differently, both Ricci curvatures are mostly positive within
clusters/communities while negative curvatures are present in “linking regions” connecting communities.

Persistent Ricci curvature based Filtration Process
Persistent Ricci curvature (PRC) is used to track the changes in curvature values of a simplicial complex
along a filtration process. At each filtration parameter f , curvature distributions for 0-simplex, 1-simplex
are obtained. Statistics of the curvature distributions such as persistent minimum, persistent maximum,
persistent mean, persistent standard deviation, etc. are computed.

Figure: Illustration of 0, 1-simplex Forman Ricci curvatures (A–B) and four persistent attributes (C) on a nested sequence of
simplicial complexes from a filtration process.
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Persistent Ricci curvature basedMachine LearningModels
Persistent Ricci curvature based machine learning models (PRC-ML) are proposed to predict the binding
affinities of protein-ligand interactions using PDBbind databank. The PRC-ML models have outperformed
over 20 existing traditional molecular based descriptor models when tested using PDBbind databanks.

Figure: Left: Breakdown of protein-ligand complex into several graphs/simplicial complexes. Right: Comparison of PRC-ML
models with state-of-the-art traditional molecular descriptor based models.

Modelling Protein-Protein Interactions
Similar to persistent Ricci curvature, persistent Hodge Laplacians are used to extract both topological and
geometrical information from protein-protein interactions (PPIs) before and after mutations. Both zero and
non-zero eigenvalues from persistent Hodge Laplacians reveal the intrinsic topological and geometrical
information within the PPI structures. The statistics of persistent eigenspectrums serve as persistent
spectral features for machine learning.

Figure: The persistent multiplicity of zero eigenvalues for L0 and L1 from PPI structure before and after mutation.

PerSpect-EL Models for Protein-Protein Interactions
A series of persistent spectral ensemble learning (PerSpect-EL) models are introduced to use the persistent
spectral features to predict the change in binding affinity values upon mutation (∆∆G). Each statistical
attribute of persistent spectral feature is trained with a base learner such as a convolutional neural network
(CNN) or a gradient boosting tree (GBT). The trained outputs are concatenated and learned by a meta
learner to produce an ensemble learning prediction. The PerSpect-EL models have surpassed existing
state-of-the-art traditional molecular descriptor based models when tested with the SKEMPI-1131 dataset.

Figure: A: Comparison between the experimental binding affinity changes (kcal/mol) with predicted binding affinity changes
(kcal/mol) from PerSpect-EL model. B: Comparison of PerSpect-EL models with existing state-of-the-art prediction models C:
Breakdown of predicted binding affinity changes (kcal/mol) by mutation types and by alanine/non-alanine mutations.

Conclusion
Molecular representations and featurisations still remain an ongoing challenge in mathematical AI based
molecular sciences. In order to introduce new persistent functions to improve molecular featurisation, we
introduce two persistent Ricci curvatures (PRCs), i.e. Ollivier Persistent Ricci curvature (OPRC) and
Forman Persistent Ricci curvature (FPRC). Our PRC based machine learning (PRC-ML) models are able to
outperform several traditional molecular descriptor based machine learning models in protein-ligand
binding affinity predictions. Moreover, we also apply persistent Hodge Laplacians to capture the
topological and geometrical information in protein-protein interactions before and after mutations. This
allows us to construct persistent spectral based ensemble learning (PerSpect-EL) models to predict the
binding affinity changes upon mutation for protein-protein interactions.
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